Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Distributor Search
    • Engineering Week
    • Podcasts
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Leadership
    • 2020 Leadership in Fluid Power Winners
    • 2021 Leadership in Engineering Winners
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guides
    • Design Guide Library
    • Electro-Pneumatic Regulator & Flow Controller Design
    • Hydraulic Cylinders
    • Hydraulic Filtration
    • Hydraulic Hose Assembly
    • Hydraulic Pumps
    • Pneumatic Actuators
    • Pressure Gauges
  • Events
    • Engineering Week
    • Fluid Power Tech Conference

How does an O-ring seal work?

By Ken Korane | December 4, 2015

Share
O-rings-PH-Seal-Group

O-rings from Parker Hannifin’s Seal Group

O-rings are probably the most common fluid power seals. They’re made by the billions by manufacturers all around the world, and they prevent leaks in everything from pumps and valves to cylinders and connectors. The compact, economical components handle both static and dynamic operations, in pneumatic and hydraulic applications.

These simple seals consist of a donut-shaped ring (technically, a toroid) with a circular cross section. They’re typically made of elastomers like Buna N, Neoprene or silicone, but they also come in plastics like PTFE, metals and other materials. Sizes range from fractions of an inch in diameter to several meters across.

O-rings seal by mechanical deformation that creates a barrier to a fluid’s potential leak path between two closely mated surfaces. O-rings are typically installed in a groove that’s machined or molded in one of the surfaces to be sealed. Their rubber-like properties let the devices compensate for dimensional variations in the mating parts.
When properly sized, the clearance between the surfaces is less the OD of the O-ring. Thus, as the two surfaces contact, forming a gland, they compress the O-ring, which deforms the round cross section. This diametrically squeezes the seal, and the resulting force ensures surface contact with the inner and outer walls of the gland.

With little or no pressure, the natural resiliency of the elastomer compound provides the seal and keeps fluid from passing by. Increasing the squeeze (say, by using a larger diameter O-ring in the same-size groove) increases deformation and sealing force. But that can lead to problems in higher-pressure dynamic applications.

Applying fluid pressure pushes the O-ring against the groove wall on the low-pressure side, increasing the sealing force. Interference between the seal and mating surfaces lets the O-ring continue to operate leak-free. At higher pressures, the O-ring deforms to a somewhat “D” shape, and contact area between elastomer and gland surfaces may double from initial zero-pressure conditions. Due to the elastomer’s resiliency, releasing pressure lets the O-ring return its original shape, ready for the next pressure cycle. It also lets properly designed O-rings seal in both directions.

Extreme pressures, however, can force elastomer material into the small clearance between the mating surfaces just beyond the groove. Ultimately, the O-ring material shears and flows into the so-called extrusion gap, and the seal fails. Dynamic applications can hasten seal extrusion. But even in static applications, high pressure can stretch assembly bolts and open the extrusion gap sufficiently to permit leakage.

While O-rings are relatively straightforward seals, there are still a number of design considerations when specifying them. For starters, they come in a wide range of materials and countless compounds and variations. Matching the material to the application, however, lets them provide excellent fluid compatibility, withstand various operating environments and handle temperature extremes. Other considerations include static versus dynamic (rotary or axial) conditions, operating pressure, and whether the system sees pressure spikes. These, in turn, let engineers specify design parameters like proper gland dimensions, gland surface finishes, seal cross-section diameter, material hardness, initial compression, clearance gaps, and even how much the seal expands or contracts in relation to its mating surfaces as temperatures change. Properly designed, O-rings provide long, trouble-free life in countless applications.

Other articles for you:

Default ThumbnailCan Pneumatics Support Extreme Engineering? Default ThumbnailParker Hannifin planning sealing focus at Hannover Messe 2017 Default ThumbnailNew Parker-Prädifa compound, nobrox, useful for Seals, engineered components Default ThumbnailParker unveils Resilon 4350 Polyurethane with high temperature nanotechnology

Filed Under: Sealing
Tagged With: parkerhannifin
 

Current Digital Issue

Are hydrogen fuel cells the future for mobile machines? Prioritizing decarbonization is, without doubt, one that most countries agree with almost pure unanimity. Here, in the U.S., the Biden administration has a goal to eliminate carbons from the electric grid system by 2035. Globally, most countries are on similar timelines. But, looking ahead to 2050,…

Get Fluid Power News Direct

Fluid Power News

RSS Featured White Papers

  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
  • Quick Connect Couplings: A Critical Component in Hydraulic Systems

Follow us on Twitter!

Tweets by @wtwh_paulheney
Tweets by @FPW_MaryGannon

Fluid Power World 2021 Handbook

Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • Advertise
  • About us
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Distributor Search
    • Engineering Week
    • Podcasts
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Leadership
    • 2020 Leadership in Fluid Power Winners
    • 2021 Leadership in Engineering Winners
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guides
    • Design Guide Library
    • Electro-Pneumatic Regulator & Flow Controller Design
    • Hydraulic Cylinders
    • Hydraulic Filtration
    • Hydraulic Hose Assembly
    • Hydraulic Pumps
    • Pneumatic Actuators
    • Pressure Gauges
  • Events
    • Engineering Week
    • Fluid Power Tech Conference