Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Distributor Search
    • Engineering Week
    • Podcasts
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Leadership
    • 2020 Leadership in Fluid Power Winners
    • 2021 Leadership in Engineering Winners
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guides
    • Design Guide Library
    • Electro-Pneumatic Regulator & Flow Controller Design
    • Hydraulic Cylinders
    • Hydraulic Filtration
    • Hydraulic Hose Assembly
    • Hydraulic Pumps
    • Pneumatic Actuators
    • Pressure Gauges
  • Events
    • Engineering Week
    • Fluid Power Tech Conference

What are retaining rings?

By Mary Gannon | August 18, 2014

Share

Retaining rings are engineered components used to hold many types of assemblies together. They are precision engineered to accurately position, locate and retain parts on shafts or in bores. The rings are installed into a groove, and all the other components of the assembly sit against and are retained by the ring.

0614_FluidPower_RetainingRingsRetaining ring designs include spiral, tapered and constant section. Spiral rings do not have ears or lugs to interfere within the assembly like standard stamp rings. Tapered section rings feature compressible lugs to give them a circular shape in the groove, allowing them to grip tightly along the edge. Constant section retaining rings are best suited for heavy-duty applications. They feature a uniform, constant section with no change in width throughout their entire circumference. Some specialty designs exist as well, including ones that feature a very shallow groove for use on thin-walled sections of components.

They help reduce costs by eliminating threading and other machining and offer reduced weights and sizes.

In hydraulic systems, spiral retaining rings are used most often on the cylinder, particularly to retain the seal packing in cylinders. Retaining rings replace machined “steps” to retain the packing. Additionally, retaining rings are also found in hydraulic couplers, hydraulic pumps and other hydraulic components that need secure fastening.

In pneumatic systems, they can be found in actuators, compressors, couplers, etc., to help fasten components as needed.

Standard materials for retaining rings include carbon steel, carbon spring steel, 302 stainless steel, and 316 stainless steel. Other available materials include phosphor bronze, beryllium copper, Inconel, Elgiloy, Hastelloy, and more.

A different type of ring design, called a “scraper ring,” is also used in hydraulic cylinders. These rings help keep debris out of the seal portion of the cylinder to extend the life. They are typically made out of a soft material, such as beryllium copper, so they can hone to the shaft.

Specifying rings for fluid power systems
The most important detail to know when selecting a retaining ring for your application is to know if the groove for the ring will be located on a shaft (external) or in a bore (internal) and then specify the diameter of that shaft or bore. Additionally, if the ring will be subjected to axial thrust loads, the ring specifications need to be checked to determine whether a light-duty, medium-duty or heavy-duty ring is required. Finally, the material needs to be selected based on what type of corrosive media the ring will be subjected to.

Other articles for you:

IC-Fluid-Power-ScanWill Hydraulic Pressure IntensifiersHow can hydraulic pressure intensifiers improve your system design? lunch box sessions carl dykeLunchBox learning about fluid power Cosford hydraulic symbology Basic 4-3 Valve featureHydraulic Symbology 201 – industrial directional valves Hydraulic Symbology 303 Compound Symbols Figure 1Hydraulic Symbology 303 – Compound Symbols

Filed Under: Fluid Power Basics

 

About The Author

Mary Gannon

Mary Gannon is editor of Fluid Power World. She has been a technical writer and editor for more than 13 years, having covered fluid power, motion control and interconnect technologies.

Current Digital Issue

Are hydrogen fuel cells the future for mobile machines? Prioritizing decarbonization is, without doubt, one that most countries agree with almost pure unanimity. Here, in the U.S., the Biden administration has a goal to eliminate carbons from the electric grid system by 2035. Globally, most countries are on similar timelines. But, looking ahead to 2050,…

Get Fluid Power News Direct

Fluid Power News

RSS Featured White Papers

  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
  • Quick Connect Couplings: A Critical Component in Hydraulic Systems

Follow us on Twitter!

Tweets by @wtwh_paulheney
Tweets by @FPW_MaryGannon

Fluid Power World 2021 Handbook

Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • Advertise
  • About us
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Distributor Search
    • Engineering Week
    • Podcasts
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Leadership
    • 2020 Leadership in Fluid Power Winners
    • 2021 Leadership in Engineering Winners
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guides
    • Design Guide Library
    • Electro-Pneumatic Regulator & Flow Controller Design
    • Hydraulic Cylinders
    • Hydraulic Filtration
    • Hydraulic Hose Assembly
    • Hydraulic Pumps
    • Pneumatic Actuators
    • Pressure Gauges
  • Events
    • Engineering Week
    • Fluid Power Tech Conference